
Sorting Orders of Arrays

non-descending

i (index)

a[i] (value)

0 1 2 3 4

a

decreasing/descending

i (index)

a[i] (value)

0 1 2 3 4

a

0 a.length - 1i j

a

i (index)

a[i] (value)

0 1 2 3 4

a

increasing/ascending

i (index)

a[i] (value)

0 1 2 3 4

a

non-ascending

-
....

--

--

Selection Sort

0 1 2 3

0 1 2 3

Keep selecting minimum from the unsorted portion
and appending it to the end of sorted portion.

unsorted
sorted

#
4/14/2

#

Insertion Sort

0 1 2 3

0 1 2 3

Keep getting 1st element from the unsorted portion
and inserting it to the sorted portion.

unsorted
sorted

#
4/14/2

#

Selection Sort Insertion Sort
0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

#1

#I #

#I #I

#

#1

Selection Sort: Deriving Asymptotic Upper Bound

Insertion Sort: Deriving Asymptotic Upper Bound

Selection Sort in Java

0 1 2 3a

i inner loop: j from ? to ? midIndex at L6 after L6 - L8, a becomes?

Outer Loop:
At the end of each iteration
of the for-loop,
a is sorted from a[0] to a[i].

Inner Loop: select the next min from a[i] to a[n - 1]
and put it to the end of the sorted region.

0 1 2 3a

0 1 2 3a

4/14/2

4/14/2

#I

Insertion Sort in Java

i current after L3 j at L8 after L8, a becomes?

0 1 2 3a

Outer Loop:
At the end of each iteration
of the for-loop,
a is sorted from a[0] to a[i].

Inner Loop: find out where to insert current into
a[0] to a[i] s.t. that part of a becomes sorted.

0 1 2 3a

0 1 2 3a

0 1 2 3a

4/14/2

-

14/2
#

#

Singly-Linked Lists (SLL): Visual Introduction

- A chain of connected nodes (via aliasing)
- Each node contains:
 + reference to a data object
 + reference to the next node
- Head vs. Tail
- The chain may grow or shrink dynamically.
- Accessing a position in a linear collection:

+ Array uses absolute indexing: O(1)
+ SLL uses relative positioning: O(n)

